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Abstract

Moving object detection is of great importance to some tasks in the industry. Based
on the fast development of deep learning, deep learning based models have achieved
promising results. Numerous deep learning models for object detection need object-
level supervision which contains the coordinates of ground-truth boxes. However, the
object-level annotations are expensive and difficult to obtain. Therefore, in this project,
an adapted weakly supervised deep learning based framework for moving object detec-
tion is proposed. The framework adopted a few effective modules to improve the perfor-
mance such as Instance Refinement, Guided Attention, Box Regression and Knowledge

Distillation Module.

The project consists of four main chapters. The motivation and objectives are elabo-
rated in the introduction, and several main challenges are listed. Related Work chapter
focuses on the recent deep learning methods for object detection and some conventional
models for moving object detection. Besides, the structures and principles of the base-

line framework (adapted WSDDN) are described in detail.

After the introduction of the architecture of the framework. The experiments demon-
strate the effectiveness of each module through an ablation study, and the proposed
framework can finally achieve 14.3% mAP on the Calipsa data set. The visualizations
of prediction boxes prove the ability to identify the class and detect moving objects of
the framework. Besides, class activation maps (CAM) visualizations show the strong

attention of the GAM module on the moving targets.

Chapter five discusses some apparent defects of the proposed framework such as the
local minimum problem and multiple objects of the same class that may exist in the
images. In response to these problems, several promising solutions that may be explored

in future work are given.
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1| Introduction

1.1 Motivation

Over the last 10 years, there have been major improvements in the field of deep
learning and Convolutional Neural Network (CNN) in particular. CNNs are widely
used in computer vision and achieved great improvement in plenty of open prob-
lems. So far, deep learning model has now become a standard and most effective
approach to address the problems of several important areas in computer vision

such as image classification, segmentation, objection detection, etc.

Object detection is a task aiming to find all objects of a given set such as cat,
dog, and person. The object detection model is required to generate the bounding
boxes coordinates and class annotations of each object within a given image. A
bounding box consists of the coordinates of top-left and bottom-right corner points

of a minimal axis-aligned rectangle.

Fully supervised deep learning methods have been applied in the area of object
detection widely and studied very well. It means that object-level annotations
(bounding boxes coordinates and class annotations) are given in the training set.
However, accurate object-level annotations are very time-consuming and expen-
sive to obtain in industrial data sets due to the huge number of images (usually
more than 100,000 images in total), therefore making the fully supervised meth-

ods sometimes impractical in industry.

Class Activation Map (CAM) (Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016),
proposed by Zhou et al., is a technique of generating a heat map of activation
which focuses on the object area. This work discloses the localization ability of

CNN and inspires many researchers to train object detection models with only
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image-level annotations (each image is annotated with a list of all classes which
are to be found in it, but not their locations) in order to save the heavy cost of
preparing bounding boxes for each image. This kind of task is called weakly su-
pervised object detection (WSOD). Despite the advantage of saving the significant
cost of preparation, the WSOD task is still very challenging. Usually, the perfor-
mance of WSOD models can only attain 30% to 60% of the average precision
(AP) generated by fully supervised object detection (FSOD) models, so there is
still a large gap between the performance of WSOD and FSOD.

In real-life tasks, it is generally not necessary to find all the known objects in an
image. For instance, CCTV monitoring systems are only required to detect and
track moving objects in a series of frames. To tackle this problem, almost all
existing research has utilized FSOD models which cost a huge amount of time
in preparing bounding boxes and their annotations. Therefore, in this project,
WSOD deep learning models are expected to solve the problem of moving object

detection.

1.2 Problem Definition

Given two frames in a video (almost consecutive), the model is required to out-
put the details of all moving objects of known classes. The details include the
coordinates of bounding boxes, confidence values and class labels of all detected

moving objects. (See Figure 1.1)

1.3 Objectives

The objective is to build a general end-to-end deep learning WSOD framework

that combines the phases of object detection and object filtering to solve the mov-
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Model

Figure 1.1: Problem definition. Left: the input to the model is two concurrent
frames from a security video. Right: output from the model is an annotated image.
Green bounding boxes show the location of a person in the two frames. Red
annotations show the label (person) together with a confidence measure.

ing object detection problem.

The framework is expected to achieve reasonable performance on a real data set
from industry, and generalize to other data sets (with different resolutions and

from different environments).

In this project, the framework will be trained and tested on the Calipsa data set.
Calipsa is a company aiming to address the problem of false CCTV alarms via
Al technology. The Calipsa data set is produced by CCTV monitoring systems
and contains 277887 pairs of images in the training set and 30714 pairs in the
test set. The image pairs are temporally sparse and the time difference between

consecutive frames is variable. In addition, the image quality is highly variable.
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1.4 Challenges

There are plenty of challenges confronting the weakly supervised moving object

detection. Some of the most significant challenges are listed as follows.

1. Quality of images: The low resolution (640 x 480) and different brightness

will confuse the model.

2. Small object: The small moving objects may be mistakenly regarded as

background noise.

3. Shadow and occlusion: Shadows should not be detected as objects. Ob-
jects which are occluded from the light source (in shadow) are hard to iden-

tify.

4. Local minimum problem: The WSOD framework tends to output the
bounding box of the most characteristic part of the moving object instead of

the whole body (e.g. face of a person or headlight of a truck).




2| Related Work

2.1 Object localization in CNNs

Convolutional Neural Networks (CNNs) excel at recognizing and extracting pat-
terns in the input image, such as lines, gradients and circles. It is the property
that enable CNNs to become a powerful feature extractor for a variety of com-
puter vision tasks. However, very few researchers attempted to study the ability
of localization of CNN until (Zhou, Jagadeesh, & Piramuthu, 2015) pointed out
it.

These authors concluded CNNs are capable of storing the localization informa-
tion without the supervision of bounding boxes. Although having this remarkable
ability to localize objects in CNNs, such ability will be lost if the downstream

fully connected layers are used for classification task.

In order to preserve the localization ability of CNNs, Global Average Pooling
(GAP), instead of multiple fully connected layers, can be applied after all convo-
lutional units. GAP is commonly deployed as a structural regularizer to prevent
over-fitting during training, but in (Zhou et al., 2016), the authors operate an in-
ner product on the feature vector generated by GAP and the weight of the last
convolutional layer to create a class activation map (CAM) which represents the

activation areas of each class effectively.

2.2 Weakly Supervised Object Detection

Recently, weakly supervised models for object detection can be split into two main

kinds of approaches: segmentation-based method and Multiple Instance Learning
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(MIL) (Dietterich, Lathrop, & Lozano-Pérez, 1997). So far, due to the outstanding
performance of MIL methods, the MIL-based model actually becomes the most

popular approach in WSOD task.

2.2.1 Multiple Instance Learning

In the original definition of MIL (Dietterich et al., 1997), the basic training unit
is called a bag BB and each bag consists of a collection of instances {I,}. There
are two constraints in MIL: (1) If all instances of a bag are labeled as negative,
the bag is treated as negative. (2) If at least one instance of a bag is labeled as

positive, the bag is positive.

1 L L
person [0.1| 0.1 [0.0 sum [0.2]
dog [0.7 0.6 (0.1f ——)|14| v
cat 0.3] 0.4 (0.1 0.8
L loss
[0.07
1.0] G
0.0

Figure 2.1: MIL computation example in WSOD task. Several proposals exist
in the left image and the MIL module output a proposal score vector (column of
the matrix) for each proposal. The image score Y is the sum of all score vectors
which is expected to be close to the ground-truth label G.

Based on the definition of MIL, WSOD task can be transformed into a MIL prob-
lem naturally. Consider a data set of /N images. Every image in the data set is
viewed as a bag B; (1 € [1, N]) in MIL, and all proposal bounding boxes with
this image (proposals for short) {P;} are the instances (elements) of this bag ;.
Typically, for each instance P;, a model will generate a feature vector I;'. € RY,

where C' is usually denoted as the number of classes in the data set.
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Note that in the WSOD task, each image is only associated with an image-level
annotation. The annotation G; € R is a vector that only contains 1 or 0, repre-
senting whether or not the class appears in the image. The output Y; of a WSOD
model is the same size of G, for the convenience of backward propagation. A sim-
ple method to obtain the output Y is to aggregate {P;} via aggregation function

(such as sum) which satisfies the requirement of MIL.
Y, = AGG(I) <<= G, (2.1)

where AGG is an aggregation function and <= represents loss computation.

2.2.2 Basic MIL-based WSOD Framework

WSDDN (Bilen & Vedaldi, 2016) is a milestone work in the WSOD task. Bilen
et al. first introduced the MIL module into WSOD task. In addition, WSDDN
utilized two branches to perform the localization and classification tasks respec-
tively. Despite the low performance and simplicity, almost all WSOD frameworks
are developed based on WSDDN. In this section, we describe and explain some

fundamental modules and processes in this framework.

2.2.2.1 Proposal Generation

Current FSOD frameworks are almost all developed based on two classical FSOD
frameworks: Fast-RCNN (Girshick, 2015) and YOLO (Redmon, Divvala, Gir-
shick, & Farhadi, 2016). The YOLO framework directly produces the prediction
boxes by the last layer while Fast-RCNN generates the translation and scaling

offsets of a collection of proposals.

In the FSOD task, the annotation contains the coordinates of ground-truth boxes

so that the YOLO framework can perform the regression task directly on the co-
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ordinates. However, in the WSOD task, object-level annotations do not exist so

the prediction boxes are part of proposals.

There are two types of proposal generation methods: sliding window (SW) and

searching algorithms.

The SW proposals are identical to the sliding windows during the convolutional
operation, except for varied sizes of windows applied in SW operations. Despite
the rapid production of proposals in SW operations, more than ten thousand of
them will largely reduce the efficiency of Region of Interest (Rol) pooling layers

and fully connected layers in the forward process.

Conversely, searching algorithms (which detect complete objects based on edges,
colors, etc.) produce far fewer proposals, normally less than 2000. Therefore,
leveraging searching algorithms to produce proposals offline prevails in WSOD
frameworks. The most common algorithms are Selective Search (SS) (Uijlings,
Van De Sande, Gevers, & Smeulders, 2013) and Edge Box (EB) (Zitnick & Dollar,
2014).

SS (Uijlings et al., 2013) algorithm first produces small proposal boxes accord-
ing to the segmentation results by the method of (Felzenszwalb & Huttenlocher,
2004). The next step is to constantly merge small boxes according to the metrics
of similarity including color, size, shape and texture. The EB (Zitnick & Dollar,

2014) algorithm produces proposals based on edge detection and clustering.

In WSDDN (Bilen & Vedaldi, 2016), the authors try both algorithms and find
that the model trained on EB proposals achieves slightly better performance ( 1%
average precision) than on SS proposals. Furthermore, the model attains more
than 3% improvement when the proposal scores of EB are given as an attention

map in the framework.
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2.2.2.2 Feature Extractor

The feature extractor, often called backbone in the object detection task, aims to
transform a 3-channel RGB image into a high-dimensional (hundreds of chan-
nels) feature tensor. This feature tensor encodes plenty of information (such as
the location of each foreground object) stored in an image, and they are always
decoded by fully connected layers to tackle different kinds of problems such as
class predictions and offset predictions. The prevailing feature extractors in object
detection tasks are AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) and VGG16

(Simonyan & Zisserman, 2014).

224x224x3 224x224x64

/ 112x112x128

56x56x256

28x28x512 soft-max
7 7x7x512 FC -

14x14x512

Convolutional Layer D Fully-Connected Layer

D Max-Pooling Layer Soft-max Layer

Figure 2.2: VGG16 Network Architecture (Simonyan & Zisserman, 2014). The
feature extractor represents the VGG16 network without the fully connected lay-
ers and the last soft-max layer.

There are also other influential feature extractors including ResNet (Simonyan &
Zisserman, 2014), GoogleNet (Szegedy et al., 2015), etc. However, for the object
detection task, the extractor gains significant superiority when the kernel sizes of
convolutional layers are small because it can reduce the loss of object localization

precision in images shown in the experiment (Shen et al., 2020).

Following WSDDN (Bilen & Vedaldi, 2016) and for impartial comparisons, re-

10
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cent WSOD frameworks commonly utilize the VGG16 backbone pre-trained on

the Imagenet (Deng et al., 2009) data set.

2.2.2.3 Detection Head

The detection head contains the Rol pooling layer and the MIL module. It is
designed to transform a feature tensor into a 2D proposal score tensor. Each row

of it represents the class scores for a proposal.

Rol Pooling was first introduced in Fast-RCNN (Girshick, 2015) and has been
widely used in object detection frameworks since then. It functions as a pooling
layer in which the pooling areas are not sliding windows. The actual polling areas
are the boxes according to the locations of the proposals. In addition, all pooling
areas will be transformed into small tensors of a unified size such as 7 x 7 in

common.

The MIL module in WSDDN (Bilen & Vedaldi, 2016) encompasses two streams,

one for class scores predictions and the other for providing confidence of each

proposal.
class class
FC Layer Softmax —_—
over classes
. — Element-wise
= product
8 B L]
& class class \/
a «——> «—>
v
Proposal Feature Softmax Proposal Scores
FC Layer over proposals

Figure 2.3: MIL Module.

As represented in Figure 2.3, the detection head performs element-wise product

11
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on the middle features generated by two streams in the MIL module, so that we

can obtain proposal scores.

2.2.3 Effective Modifications

Based on WSDDN, various effective WSOD frameworks emerge. In this section,
we briefly introduce some of the most powerful and classical frameworks that

achieve great improvement over WSDDN and have a vast impact on future works.

In (Diba, Sharma, Pazandeh, Pirsiavash, & Van Gool, 2017), Diba et al. proposed
a cascaded CNN which combines the segmentation and WSOD in cascaded style.
The segmentation is guided by a class activation map (CAM) and feature tensor
produced by the backbone. Segmentation results help weigh the importance of
each proposal and make the MIL module focus on object areas. This cascaded
method achieves 3.5% mAP improvement on the VOC2007 test data set compar-
ing to WSDDN (mAP is an evaluation metric for object detection, details can be

referred to (Everingham & Winn, 2011)).

OICR (Tang, Wang, Bai, & Liu, 2017) was the state-of-the-art WSOD framework
in 2017. Tang et al. developed an online instance classifier refinement method
to refine proposal scores, by which the local optimum problem (see 1.4) can
be partially addressed. Instance (proposal) labels inferred from the MIL mod-
ule are propagated to their overlapped instances, and the next-level classifier will
be trained by these new labels. The author applied three refinement modules and
attained 42.0% mAP on the VOC2007 test data set. The authors proposed to train
an FSOD network Fast-RCNN (Girshick, 2015) with the object-level annotations
produced by the OICR framework. The final performance arrives at 47.0% mAP.

Besides, Tang et al. developed a new WSOD framework based on OICR in 2018,
called PCL (Tang, Wang, Bai, et al., 2018). PCL also applied a multi-level in-

12
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stance learning manner, but it replaced the spatial label propagation with proposal
cluster learning. Concretely, the instance label inference is based on a cluster
of instances, and the center of the cluster is determined by a few instances with
high scores other than one instance with the top score. The performance of PCL

achieves approximately 3% mAP improvement on the VOC2007 test data set.

With the inspiration of OICR and PCL, Yang et al. proposed that the WSOD
framework (Yang, Li, & Dou, 2019) can apply the box regression using the pseudo
ground truth. Within the multi-level refinement method of OICR, the ground truth
of next-level refinement is the instance of the top score at the current level. There-
fore, box regression’s ground truth could be the predicted instance produced by
the last-level refinement. Furthermore, Yang et al. proposed another GAM mod-
ule that adapted CAM to generate an attention mask. The attention mask will be
directly operated on the feature map produced by the backbone. Their framework
finally attains 48.6% mAP on the VOC2007 test data set without training an FSOD

framework.

Zeng et al. considered bottom-up information while measuring the proposal score
(Zeng, Liu, Fu, Chao, & Zhang, 2019) to improve the location precision. Previous
WSOD frameworks only focus on the features extracted from the whole image by
convolutional and pooling layers. This kind of feature is called top-down infor-
mation. Zeng et al. combined several objectness measurements proposed (Alexe,
Deselaers, & Ferrari, 2010) with regular proposal scores to evaluate each pro-
posal. Based on OICR, WSOD2 (Zeng et al., 2019) achieves 53.6% mAP on the
VOC2007 test data set, but new complicated measurements reduce the speed of

the forward inference to some extent.

Apart from applying box regression to improve location precision, WSRPN (Tang,

Wang, Wang, et al., 2018) adopted Region Proposal Network (Ren, He, Girshick,

13
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& Sun, 2015) in the WSOD framework to improve the quality of proposals. Their
experiments show the performance reaches 45.3% mAP on the VOC2007 test data

set without training an FSOD framework.

2.3 Moving Objection Detection

The methods to solve moving object detection tasks can be roughly divided into
three kinds of approaches: Background Subtraction, Optical Flow and deep learn-
ing models. In this section, we will briefly introduce these types of methods and

compare their strength and weakness.

2.3.1 Background Subtraction

Temporal Differencing (Liu, Ai, & Xu, 2001), also known as frame differencing,
is the most simple technique among background subtraction methods. It subtracts
two nearby frames from each other on a pixel-level basis. Both of them are trans-
formed from RGB into gray-scale figures at first. The output is the absolute value
of their subtraction. In most research works, this technique is combined with de-
blurring and threshold masking, so as to distinguish authentic movements from

noise such as the changing of light conditions or minute offsets of the camera.

Consider a series of frames F() ¢ R3>*WrxHr where i € [1, Ng], N is the
number of frames, Wy is the width of frame and Hp is the height of frame. We

denote Fz(%i ), FC(; ) and Fg ) as three matrices according to difference RGB channels.

Here we utilize the Luminosity Method (Kanan & Cottrell, 2012) to transform the

RGB figures into the gray-scale images.

G = 0.281FY + 0.562F + 0.093F) (2.2)

14
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Figure 2.4: Temporal Differencing Output. Right-hand images show the differ-
ence between the relevant two image frames. Note that changes in tree position
(top) and shadows (bottom) have contributed to the result.

where G is the gray-scale matrix of the 7 th frame.

The temporal difference 7D is computed as

TDY = |G — GV (2.3)

Normally, there is a threshold ~y for preventing background noise so that the result

is a binary image.

‘ 0 TD(z,y) <~
TDY (z,y) = (.9) (2.4)

255 TDY(z,y) >=1~

(z,y) is a pixel of moving objects if 7D (z,7) > 0.

Temporal differencing is easy to implement and requires few computational re-

sources. However, the performance is highly reliant on the velocity of target ob-

15
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jects and the threshold parameter.

There are also considerable methods related to background subtraction such as
Mean Filter (Benezeth, Jodoin, Emile, Laurent, & Rosenberger, 2008), Running
Gaussian average (Wren, Azarbayejani, Darrell, & Pentland, 1997), Background
Mixture models (Stauffer & Grimson, 1999), etc. These approaches apply differ-

ent probability models and kernels to detect the foreground.

2.3.2 Optical Flow

Optical Flow (Beauchemin & Barron, 1995) is also a conventional type of ap-
proach able to tackle the moving object detection task. When an object moves,
it forms a series of continuously alternating frames on the human retina, and the
information of these changes flows through the retina at different times, as if it

were a flow of optics.

In practice, the velocity vector of pixels in the image is regarded as optical flow.
the optical flow method utilized in moving object detection determines the conti-
nuity of the optical flow field. If there are no moving objects in the frames then

the field is continuous.
The basic assumptions of the Optical Flow method are listed as follows:

1. Brightness constancy: Even if a pixel in an image moves to other positions,

the brightness keeps the same.
2. Small Movement: The moving objects in two frames are very close.

Consider the brightness intensity field /(z, y, t), where x, y are the physical coor-

dinates and ¢ denotes time. We can obtain the following equation by Taylor series

16



University of Oxford

St Anne’s College

based on small movement assumption:

I(z+ Az, y+ Ay, t+At) = I(z,y, t)+%Ax+g_;

0 At+0(Az, Ay, At)

(2.5)

With the assumption of brightness constancy I (x+Ax, y+Ay, t+At) = I(z,y,t)

and ignoring the high-order term O(Az, Ay, At), we have

oI ol ol

—Ar+ —Ay+ —At=0

ox oy ot
Dividing by At,

ol ol ol
%Vx‘l‘a—y%—l— o

which is equal to

where V' is the optical flow field.

(2.6)

2.7)

(2.8)

In order to solve Equation 2.8, we need another constraint equation (Lucas, Kanade,

et al., 1981; Horn & Schunck, 1981) to estimate the actual flow.

Despite the high accuracy of the Optical Flow method, the assumptions of this

approach are strict, especially the assumption that the movements must be small.

Therefore, this method can be not applied to some data sets in the industry.

2.3.3 Deep Learning Method

With the fast development of the deep learning technique, many recent papers

(Zhu et al., 2020; Zhang, Li, Zhang, Wu, & Zhao, 2015; Patil & Murala, 2018;

17
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Ye, Li, Chen, Wachs, & Bouman, 2018) have attempted to apply deep learning

frameworks in moving object detection.

Zhu et al. (Zhu et al., 2020) adopted a two-stage deep learning framework. The
first stage was designed to extract the feature of all moving areas; The second
stage is another deep CNN that classifies and accurately localizes the moving
objects. During preprocessing, temporal differencing is applied to provide more

direct information of moving areas.

Mandal et al. (Mandal, Kumar, Saran, et al., 2020) proposed a multi-level fea-
ture extraction backbone. This design can effectively detect small objects thus

obtaining great performance in detecting moving objects.

Chen et al. (Chen, Wang, Zhu, Tang, & Lu, 2017) adapted the LSTM (Hochreiter
& Schmidhuber, 1997) module and encoder-decoder (Badrinarayanan, Kendall,
& Cipolla, 2017) structure in a deep learning framework that is able to receive
multiple frames at the same time and remember long-term features or information.

Also, they applied an attention layer to enhance the activation of moving parts.

18



3| Methodology

————— Forward Process

Proposal
Generation

............. > Supervision

)

Knowledge
4 Roi Pooling FC Distillation |—
Module

Backbone

(®) Element-wise Product MIL __| Refinement | | Refinement
Module Module

@ Element-wise Sum L | IN—

Figure 3.1: WSOD Framework Architecture. The framework used in this
project receives an image pair and outputs a proposal score X € R *¢ where
N, represents the number of proposals and C' is the number of classes.

Building on the successful features of neural networks explored in Chapter 2, we
designed a framework for weakly supervised object detection. The architecture
of our framework is represented in Figure 3.1. The input of the framework is
an image pair which are two consecutive frames. The backbone consumes two
images and produces a feature map. The Guided Attention Module (GAM, see
Section 3.5) functions as an attention module to enhance the feature map. The
Rol pooling layer receives the proposals and the enhanced feature map. The out-
put of Rol pooling (see Section 3.2) and several fully connected layers is called
the proposal feature. MIL, refinement and knowledge distillation modules all re-
ceive this proposal feature (the output tensor of the FC layer in Figure 3.1) as
an input and generate a proposal score. All refinement modules aim to refine the

classifiers inside by the pseudo ground truth. The concrete refinement process will

19
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be elaborated in the Section 3.4. In order to maintain the information, the knowl-
edge distillation module is adopted. It aggregates all proposal scores produced by

multiple refinement modules and outputs a final proposal score.

In this chapter, all modules will be described in the following sections.

3.1 Backbone

2 o 512 512

&

convs

512 512

)
"V
N

conv4
03

256 256

g 128 128 conv3
EZEZ conv2

convl

Conv&Relu Max Pool

Figure 3.2: Backbone of the framework. This module is based on VGG-16.
Adaptations from the original VGG-16 are explained in the text.

As mentioned in Section 2.2.2.2, the backbone plays an important role in the
object detection task. Considering the concrete problem defined in Section 1.2, an
adapted VGG16 (Simonyan & Zisserman, 2014) architecture was applied as the
backbone of the framework (See Figure 3.2). The details of layers in the backbone
are listed in Table 3.1.

There are a few differences between this adapted VGG16 backbone and the orig-

inal architecture.

20
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Layer Name

Layers

Convl

Conv2d(3, 64) + Relu

Conv2d(64, 64) + Relu

MaxPool2d

Conv2

Conv2d(64, 128) + Relu

Conv2d(128, 128) + Relu

MaxPool2d

Conv3

Conv2d(128, 256) + Relu

Conv2d(256, 256) + Relu

Conv2d(256, 256) + Relu

MaxPool2d

Conv4

Conv2d(256, 512) + Relu

Conv2d(512, 512) + Relu

Conv2d(512, 512) + Relu

MaxPool2d

Conv5

Conv2d(512, 512) + Relu

Conv2d(512, 512) + Relu

Conv2d(512, 512) + Relu

MaxPool2d

Table 3.1: The layers of the adapted VGG-16. The kernel size and stride of all
convolutional layers are 3 and 1. The layer convd applies dilated convolutions
where the dilation parameter equals 2.

1. In order to prevent losing numerous informative features caused by down-

sampling, the last two max-pooling layers are removed in this backbone.

Therefore, only three max-pooling layers remain, and the ratio of down-

sampling is eight which means one individual pixel of the output corre-

sponds to 8 x 8 pixels in the input image.

2. The number of channels in the first convolutional layer is doubled because

the input comes as a pair of images.

3. Batch Normalization layers do not appear in the adapted VGG16 backbone.

Many recent works do not apply Batch Normalization or Group Normaliza-

tion in the backbone due to poor performance. These normalization layers
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are normally utilized as regularization to prevent over-fitting. However, the
loss propagated backward from the MIL module is usually not accurate so
that more regularization layers will make the framework more difficult to

train.

4. According to (Shen et al., 2020), their WSOD backbone adopts dilated con-
volutions (Yu & Koltun, 2015) in order to enlarge the reception field and
obtain high-resolution feature maps without down-sampling. Therefore, our

backbone applies dilated convolutional layers in convb.

3.2 Rol Pooling

The Rol Pooling (Girshick, 2015) utilizes multiple max pooling operations to con-
vert the feature in regions of interest into the feature maps of fixed size, normally

7 xT.

Region of Interest

T ~4]
LAl
gy § 1 1 et
gL B
| R
4 Extract
\ | Multiple
MaxPool
I
Image Feature Map Rol Feature

Figure 3.3: Rol Pooling. Extract the area in the feature map corresponding to the
region of interest in the image, and perform the multiple max pooling operations.

Suppose the size of the input image is (W, Hy) and the coordinate of the region of
interest is (7, ¢, w, h) where (r, ¢) is the coordinate of the top-left point and (w, h)

is the size of this region. In addition, the size of the feature map is (Wr, Hr). The
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final output Rol Feature map (Wg, Hg) is usually defined as (7, 7).

The 4-vector coordinates of the corresponding area (red box of the feature map in

Figure 3.3) in the feature map is calculated by

[Taacmwaaha] - [T7 c,w,h} : WF/WI (31)

This rectangle area will be cropped from the feature map and down-sampled by

multiple max pooling operations.

Assume the expected size of Rol feature map is (WWg, Hg), then there will be
roughly (w,/Wg) - (h./Hg) max pooling operations to obtain the Rol feature

map. Here for simplicity, w, > Wg and h, > Hp can be assumed.

Each region of interest (proposal) leads to an Rol feature map, and each Rol fea-
ture map will be transformed into an Rol feature vector by a fully connected layer.
Therefore, the proposal feature matrix (the input in Figure 2.3) is produced by

stacking multiple Rol feature vectors.

3.3 MIL Detector

As shown in Figure 2.3, the proposal feature X? ¢ RNo*/Nr

is the input of the
MIL module. N, and N, denote the number of proposals and the length of the

Rol feature vector.

Both streams have their own fully-connected layers to extract useful information
and reduce N, to C, where C is the number of classes. The upper stream is
responsible for predicting the confidence value of every class in each proposal,
whereas the lower stream aims to provide the probability of existing moving ob-

jects in each proposal. Therefore, the soft-max operations in both streams differ.
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The concrete calculations are

X = FC(XT) e RM*C (3.2)
R.upper _ eXP(Xg) (3 3)
1) — S .

> exp(Xf)

X% = FC(XF) e RM*C (3.4)
ower . _SPXE) (3.5)
K Zz eXP(Xf})

where X®urrer and XFiower are the output of both streams, and C' denotes the
number of classes. Note that the parameters of FC layers are not shared (see

above, denoted FC and th).

The proposal score X! can be obtained by performing element-wise product on
the output of both streams.
P _ Ru er Rower
XD =X X (3.6)
Because the annotation Y € {0, 1}“ represents the absence of each one of the
classes using 0 or 1, the proposal score X € R¥*% should be aggregated as

described in Equation 2.1. The output, called classification score ® € RY, is

calculated by

®;=> X/ (3.7)

The MIL module is trained by standard binary cross entropy loss:

C
Ly = — Y _[Y.log®, + (1 - Y,)log(l — ®)] (3.8)

c=1
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3.4 Online Instance Classifier Refinement

As the figures shown in (Bilen & Vedaldi, 2016), the MIL detector tends to fo-
cus on the most characteristic part of target objects which is a common problem
in weakly supervised works. This phenomenon is caused by the local minimum
problem. Normally, after several iterations of training, the proposals, which con-
tains the most characteristic part such as heads of people, tyres of vehicles, will

be given higher confidence by the detector.

However, for the FSOD detector, there will be a box regression module to modify
the coordinates of the proposal which have the highest confidence value so that

the prediction box will more accurately wrap the whole body of target objects.

Therefore, without a box regression module, the WSOD detector will directly

output the original proposal which can only locate the most distinctive part.

In order to solve this problem, Tang et al. designed an Online Instance Classifier
Refinement (OICR) (Tang et al., 2017) module to refine multi-level classifiers.
The motivation is that the confidence value of the proposals, which include the
whole object, should be increased and higher than the ones that only contain the

characteristic part.

Consider the proposals that have high spatial overlaps with the top-scoring one.
It is probable that these proposals contain parts of the whole object. Therefore,
they can be labeled as the same class as the top-scoring proposal, and regarded as
pseudo ground truth to train the next-level classifier. After plenty of training itera-
tions, the next-level classifier is capable of identifying the whole object including

the parts which are not distinctive.

As shown in Figure 3.4, the top-scoring proposal (brown box) only contains the
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Figure 3.4: Online Instance Classifier Refinement. The proposal score gener-
ated by the MIL module is responsible for supervising the first instance classifier.
And the proposal score produced by the k-th classifier will supervise the (k+1)-th
classifier.

upper part of a person object, but there are several proposals that have high over-
laps (purple boxes) with the top-scoring one. The best threshold (determined by
the experiments) of this overlap measured by Intersection over Union (IoU) is 0.5
(Tang et al., 2017) (IoU metric computes the proportion of the intersection area
over the union area of two boxes, see Figure 4.1). All the proposals that have
overlaps higher than the threshold will be treated as foreground proposals with
persons inside. These labels (now regarded as ground truth) will be utilized to
train the next-level instance classifier. The next-level classifier will have knowl-
edge of every part of a person object so that the proposal containing the complete

person object may be given the highest score by the next-level classifier.

The detailed process of OICR is described in Algorithm 1. For each class that ex-
isted in the image pair, the top-scoring proposal j* is picked out. For all proposals,

there are two conditions. If the overlap between it and any top-scoring proposal
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Algorithm 1: Online Instance Classifier Refinement

Input: The proposal score X% of the k-th classifier; The label vector of an
image pair Y € {0,1}¢
Output: The proposal label V¥ = [vF) ... v¥,] € 0,1°T1; The loss weights
wk. r € [1, N,]. N, is the number of proposals. C' denotes the
number of classes.

Initialize I = [I1, ..., Iy,] = —inf;

Initialize V¥t = 0, ¢ € [1,C;

Initialize Vi = 1;

for cin [1,C] do

if Y. = 1 then

Get the index of top-scoring proposal j*;

for r in [1,N,] do

I. = 10U(r, j*);

if 7, > I then

Ir - I;«’

whl = Xﬁkc;

/I 1, is the threshold of overlap that determines whether a
nearby proposal is a foreground object
if I, > I, then

L Vﬁrl =0,¢ #¢

E+1 _ 1.
V:rc+_1’

is higher than a threshold I;, then this proposal is labeled as the same class of this
top-scoring proposal, and the loss weight is set to the corresponding confidence
Xﬁkc. If all overlaps are less than the threshold /;, then this proposal is labeled as

background class (¢ = 0).

Note that the index of the top-scoring proposal j* for each class ¢ is computed by

j% = arg max XF* (3.9)

T

where X** is the k-th proposal score.
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Considering the noisy ground truth generated by the OICR process, the loss weights
w” can be inserted into the loss function of multi-class cross-entropy. The loss

function of each supervision is defined as

Ny, C
1
Liine = =37 2 D Wi Vi log X[ (3.10)

P pr=1 ¢=0

where k is the time of refinement.

3.5 GAM Module

Guided Attention Module (GAM) (Yang et al., 2019) is applied to weigh the fea-
ture map and enhance the score of the target object area. The conventional way of
deploying an attention module is just getting the product of the feature map and
the attention map, and adding it to the original feature map. However, there are

two main differences between GAM and the common attention module:

1. The GAM contains both spatial and channel attention which means the at-
tention map generated by GAM has the shape RP*"W># instead of only

RW>*H while the feature map has the shape RP*W>H,

2. The GAM module owns an isolated loss calculation whereas other attention
modules are only trained with the total framework. The additional classifi-

cation loss can accelerate the learning of attention weights.

The calculation of the attention map A € RP*WxH jg
A.; =ReLU(WT . X;; +b.), c€]l,D] (3.11)

where wT and b are the parameter and bias of the convolutional layer, and ¢ €

[1, D] represents the channel. The ReLU activation function (Agarap, 2018) is
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Figure 3.5: Guided Attention Module (GAM). The GAM module outputs an
attention map to weigh the feature map and encourage the framework to focus on
the moving area. A classification score is also generated in the GAM module to
perform the backward propagation, and speed up the parameter learning.

computed as

ReLU(z) = (3.12)

The enhanced feature map X is obtained by

X4 = (14 Ay X (3.13)

cij

In order to accelerate the learning of GAM, an additional backward propagation is
introduced in GAM. Inspired by CAM (Zhou et al., 2016), global average pooling
(GAP) is adopted to produce a classification score #AM c RC, where C is the

number of classes.
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The concrete process to obtain the classification score $AM is

A.; =ReLUWT.A;; +b.), cell,C] (3.14)

W H
1 .
M= 3"V A, eRC (3.15)
WH i=1 j=1
where A is the confidence map (see Figure 3.5). W, H are the width and height

of the feature map X and the attention map A.

Similar to the MIL loss function Lyy,, the GAM loss function Lgaym is also a

binary cross entropy loss which is

C
Loav = — Y _[Y log @AM 4 (1 - Y,) log(1 — ®FAM)] (3.16)

c=1

where Y is the label vector (ground truth).

3.6 Box Regression

Due to the lack of object-level annotations, normal WSOD frameworks are not
able to perform regression tasks on the coordinates of prediction boxes so that

almost all of them would directly output the top-scoring proposal.

However, inspired by OICR (Tang et al., 2017) that top-scoring proposals are re-
garded as the pseudo ground truth of next-level classifier, the top-scoring propos-
als produced by the last classifier can also be treated as the pseudo-ground-truth

boxes to train a regression module.

Following the convention in (Girshick, 2015), the regression module only outputs
the coordinate offsets O € (—1,1)"»*4 of the original top-scoring proposal. The

four elements of each row of O is Of = [dz, dy, dw,dh] € (—1,1)"»** where
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Figure 3.6: Box Regression Module. Pseudo-ground-truth offsets are selected
from some top-scoring proposals. The smooth L, loss is calculated between the
pseudo-ground-truth offsets and the predicted offsets produced by the box regres-
sion module.

i € [1,N,).

As represented in Figure 3.6, the box regression module utilizes a fully connected
layer and an activation function tanh to transform the proposal feature X’ into

predicted offsets OF. The calculation can be described as
OF = tanh(X? - w) € RN»*4 (3.17)

where w € RN"** is the parameter of the fully-connected layer. For conve-
nience, the bias is ignored here. The tanh function is defined as tanh(z) =

(e —e ™) /(e* + e ™).
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The rectified proposals P are

Prwoq{jm + Prm

P,,0f, +P,,

P,, exp(OF)
P, exp(OF)

aw)
<

I
<
m
'F
<

(3.18)

where P € R™>** denotes the original proposals, and z,y, w, h represents the

indexes 1,2, 3, 4.

In order to perform learning in the box regression module, ground truth offsets
need to be extracted from the proposal score and ground truth boxes. Based on
OICR (Algorithm 1), the proposal label V € 0, 1V»*(€+1) i5 obtained and then
transformed into a vector V € [0, C]™» denoting the index of ground truth boxes.
V,=0 represents that proposal r does not overlap any ground truth boxes over
the given threshold /;. In addition, only the proposals that satisfy V, #0, re
[1, N,] ought to be considered in backward propagation. The boolean mask of

foreground proposal M € [true, false]» is computed by

M, = (V, # 0) (3.19)

The ground truth offsets O € (—1,1)V»** are defined as

Gy 6P, V,#0
o¢={ "V . rell,N) (3.20)

T

or, V, =0

where P € R"»*4 represents the coordinates of all original proposals, and opera-
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tion © is defined as follows:

(G\"/'hx - Pr‘x)/Prw
Gy . —P.,)/P,
Gy P, = (G, v)/Brn (3.21)
1H(G\7r,w/P7’w)

ln(G\?T,h/Prh)

For the loss function between O¢ and O, smooth L; function is used as a con-
vention (Ren et al., 2015):

Np

1
Lreg = Fp ; SmOOthLl(HOS - Orl*jHl) (3.22)

|| - ||1 is the 1-norm function.

The definition of smooth L; function is

0.522, lz| <1
smooth, (z) = (3.23)

|z] — 0.5, |z| >1

3.7 Knowledge Distillation Module

In the multiple refinement modules, the supervision is only produced by the last
classifier. For instance, the (k+1)-th refinement directly receives the output of the
classifier of the k-th refinement module. However, numerous information could
be lost in the process of multiple refinements. The (k+2)-th refinement module
does not have the complete knowledge of the k-th one so that the supervisions

may be noisy.

To prevent the loss of information during multiple refinements, (Zeni & Jung,
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2020) proposed a distillation knowledge module to maintain more information till

the last refinement process.

o - - - - - - - - - — — - —— o — - — ——— ———
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1-st proposal score _’[ Aggregate ]‘— k-th proposal score

Figure 3.7: Knowledge Distillation Module. The knowledge distillation mod-
ule receives the aggregation of the proposal scores generated by all refinement
modules, and outputs a final proposal score.

As shown in Figure 3.7, the knowledge distillation module is very similar to the re-
finement module except for the supervision process. In OICR, the pseudo ground
truth for (k+1)-th refinement is only extracted from the proposal score generated
by the k-th classifier. In the knowledge distillation module, the pseudo ground
truth comes from the aggregation of the proposal scores produced by all classi-
fiers. The aggregation function AGG(. .. ) can be various, and in this project, the

aggregated proposal score is the mean value of all proposal scores.

K

1
AGG(XP, . XPEY) = = Dy oXPE (3.24)

k=1

where K represents the number of refinements, and X** denotes the proposal
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score produced by the k-th refinement module.

The loss calculation of knowledge distillation module L, is the same as OICR

loss computation (see Equation 3.10).

3.8 Loss function

Taking the framework architecture as a whole from end to end, the final loss func-
tion combines all individual loss functions including MIL, refinement, GAM and

distillation modules.

K

L = Ly, + Lgam + Z LE e + Laigin (3.25)
=1
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4| Experiments

4.1 Datasets and Evaluation Metrics

The data set evaluated in this project is from Calipsa, and is referred to as "the
Calipsa data set". Calipsa is a company aiming to address the problem of false
CCTYV alarms via Al technology. The Calipsa data set is produced by CCTV
monitoring systems and contains 277887 pairs of images in the training set and
30714 pairs in the test set. The image pairs are temporally sparse and the time
difference between consecutive frames is variable. Limited by the resources of
computation, only 27000 pairs of images in the training set and 3000 pairs in the
test set are used in this project. For the training set, only the image pairs and
image-level annotations are included. The object-level annotations are neglected
during the whole training. There are four classes that exist in the Calipsa data set:
cyclist, person, car and truck. Due to the imbalance of these classes, especially
the lack of cyclist objects, the moving cyclists are very difficult for the framework
to detect. Therefore, the evaluation metric on cyclists is extremely low (close to

0).

For testing, Average Precision (AP, (Everingham & Winn, 2011)) is the main
metric for evaluation on the test set. The AP metric strictly follows the standard
PASCAL VOC protocol, and the threshold of IoU (the metric of overlap between
two boxes, see Figure 4.1) between the predicted and ground-truth boxes is 0.5
which obeys the convention in object detection tasks. mAP represents the mean

value of the AP of all classes.
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Figure 4.1: Intersection over Union (IoU) The IoU is a metric of the overlap
between two boxes. The calculation process is shown above.

4.2 Implementation Details

The framework is built on the adapted VGG-16 (Figure 2.2) and the last two fully
connected layers are moved after the Rol pooling layer (see Figure 3.1). The
parameters of the backbone and the fully connected layers are initialized using the
VGG-16 parameters pre-trained on ImageNet. Note that the number of channels
is doubled in the backbone, so the parameters of the original VGG-16 are also

copied and stacked along the frame channel dimension.

There are also plenty of newly added modules and layers in addition to the back-
bone in this framework. These newly added modules are initialized using Gaus-
sian distributions with O-mean and 0.01-deviations. All of these biases are initial-
ized to 0. The learning rate is set to 5 x 107° for the mini-batch size 1 during the
first 20,000 iterations, and then the learning rate is decreased to 1 x 107° for the
remaining 20,000 iterations. The momentum and weight decay of the optimizer

SGD (Bottou, 2010) are set to 0.9 and 0.0005 respectively.

For the proposal generation, there are two algorithms used in this project: Se-

lective Search (SS) and Edge Box (EB). For both algorithms, 400 proposals are

37



University of Oxford St Anne’s College

produced for each image pair. In a single iteration of training, one pair of images
will be randomly chosen from the training set and randomly resized to a scale in
the set {480, 576, 688, 864, 1200} (The short side is resized to one of the scales).

In addition, the probability of horizontal flip of a pair is 0.5 during training.

During the test, for each pair of images, it will be resized to all five scales. And
for each scaled pair, an additional flipped pair will also be generated. Therefore,
10 pairs of images will be produced for one single pair in an iteration of the test,
so there will be 10 proposal scores in total. The mean of these proposal scores

will be evaluated in the test.

The framework and all experiments are implemented based on the Pytorch deep
learning framework (Paszke et al., 2019). All of the experiments are run on an

NVIDIA Tesla T4 GPU.

4.3 Ablation Study

In this chapter, the experiments are conducted to validate the effectiveness of each
module including refinement, GAM, box regression, knowledge distillation mod-

ules. Besides, hyper-parameters are tuned in order to find the best model.

The baseline framework in this project only contains the backbone and the MIL

module, which is an adapted WSDDN (Bilen & Vedaldi, 2016).

Table 4.1 exhibits the results of frameworks combining different modules when
the IoU threshold is set to 0.5 (conventional value). The baseline model can only
achieve 2.3% mAP. With the help of three refinement modules, the performance
attains 6.0% which proves the effectiveness of refinement. Based on the base-
line and three refinement modules, three different techniques are being compared.

GAM, which enables the framework to focus on the moving areas, helps to im-
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Methods car truck person | mAP
Baseline 9.1 0.0 0.0 2.3
Baseline + Refine 2.7  18.7 2.6 6.0
Baseline + Refine + GAM 11.7 188 12.6 | 10.7
Baseline + Refine + Dist 25 204 144 94
Baseline + Refine + Regression 10.2  27.1 8.0 114
Baseline + Refine + GAM + Reg 36 295 148 | 121
Baseline + Refine + GAM + Reg + Dist | 14.0 23.7 19.2 | 143

Table 4.1: Comparison of AP performance (%) on Calipsa test set (IoU
threshold: 0.5). The cyclist class is ignored because the cyclist APs of all frame-
works are in the range [0.0%, 0.1%]. Refine denotes three refinements.

Methods car truck person | mAP
Baseline 252 229 325 20.2
Baseline + Refine 277 37.3 50.5 28.8
Baseline + Refine + GAM 232 445 32.7 25.2
Baseline + Refine + Dist 26.0 39.9 36.9 25.8

Baseline + Refine + Regression 260 417 357 | 26.1
Baseline + Refine + GAM + Reg 248 453  33.1 | 26.0
Baseline + Refine + GAM + Reg + Dist | 28.6  40.0 38.8 | 27.0

Table 4.2: Comparison of AP performance (%) on Calipsa test set (IoU
threshold: 0.01). The cyclist class is ignored because the cyclist APs of all frame-
works are in the range [0.0%, 0.6%)].Refine denotes three refinements.

prove mAP by 4.7% to 10.7%. The box regression module seems to be most
effective that improves mAP by 5.4%. The knowledge distillation module helps
to improve the performance as well, but the improvement of mAP by 3.4% is
less than the other two combinations. This is reasonable that both the GAM and
box regression module both bring new knowledge to the framework, whereas the

knowledge distillation only maintains and distills the original information.

Considering the great effectiveness of GAM and box regression module, they are
combined to evaluate the performance. However, the improvement of this combi-
nation is only 0.7% mAP (over GAM alone) which possibly means that GAM and

box regression both provide similar information of moving areas in a redundant
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fashion. After combining all modules, the final framework can attain 14.3% mAP

which is a 12.0% improvement over the baseline.

Table 4.2 shows the performances when the IoU threshold is set to 0.01. Under
this environment, as long as the prediction boxes overlap the ground-truth boxes
a little, they will be considered as correct boxes. In such conditions, localization
precision is almost ignored so that the performance represents the capability of
detecting a moving object. From the results of Table 4.2, the framework that
only has baseline and refinement modules can achieve the best mAP. All other
added modules harm the performance. Besides, the performance gap between

these frameworks is small except for the baseline.

Note that the cyclist class is ignored in Table 4.1 and 4.2 because of the extreme
lack of cyclists in the training set of the Calipsa data set. Therefore, the AP for
the cyclist is normally ranged from 0.0% to 0.1% when the IoU threshold equals
0.5.

Figure 4.2, 4.3 and 4.4 show some of the predictions of the framework combining
all modules. The first two columns are the input of the framework. The third-
column image contains the prediction boxes and ground truths. The green box

represents the ground truth and the red box represents the prediction.

Despite the multiple refinements and box regression, the framework still tends to
focus on the characteristic part especially when the object accounts for a large
proportion in the figure such as the first two rows in Figure 4.3. The second
problem is that the framework sometimes outputs the boxes only containing the
moving objects in the second image (the second column). For example, in the
first row in Figure 4.2, two men are moving and one moving man leaves in the
second image so that the framework can only detect the man who is present in

both images. Besides, the confidence value given by the framework is not high.

40



University of Oxford St Anne’s College

=W Eee T = e

FELCO SPECTRA IV SE - v PELCO SPECTRA IV

Figure 4.2: Predictions of the framework. (confidence score > 0.5%) Red boxes
are predictions and Green ones are ground truths.
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CAM 081

Figure 4.3: Predictions of the framework. (confidence score > 0.5%) Red boxes
are predictions and Green ones are ground truths.
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Figure 4.4: Predictions of the framework. (confidence score > 0.5%) Red boxes
are predictions and Green ones are ground truths.
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The framework has very little confidence in some good prediction boxes such as

the last row of Figure 4.3 only showing 1.8% confidence.

4.3.1 Hyper-parameters of the Refinement Module
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Figure 4.5: Results on Calipsa data set for different number of refinements.
The blue line indicates the different number of refinements added on the baseline
framework, and the orange one represents the refinements added on the baseline
combining the GAM module.

In this subsection, several experiments are conducted to see the effectiveness of

different hyper-parameters of refinements.

Consider the number of refinements (see Figure 4.5). The results show that only
one refinement added can improve the mAP by about 3%. Multiple times of clas-
sifier refinement can achieve more improvements, but the performance gained is
getting smaller gradually. Considering the cost of refinement, three refinements
are enough for the framework. More than three refinements may only improve

mAP by 0.1%. (extrapolating the plot in Figure 4.5).

While performing the refinement, the module will regard the proposals, which
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Figure 4.6: Results on Calipsa data set for different IoU threshold of refine-
ment modules. The framework contains all modules and there are three refine-
ment modules in the framework.

highly overlap the top-scoring proposal, as the foreground object of the same
class. The metric IoU is utilized to measure the overlap between two propos-
als and the threshold of IoU is critical to the performance of a refinement module.
Based on the results in Figure 4.6, 3-time refinements with 0.5 IoU threshold can
help achieve the best performance 14.3%. When the IoU threshold is set to 0.4 or
0.6, the mAP only drops a little (mAP ranges from 13.7% to 14.3%).

4.3.2 Moving Attention Branch

As described in Section 3.5, the GAM module functions as an attention module
and enables the framework to focus on the moving part in the images. However,
the input of the GAM module is in the only output of the backbone which does
not contain any prior knowledge. In addition, the GAM module needs an isolated

backward process which is expensive in computation.

Therefore, in this section, three different structures of the Moving Attention Branch
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Figure 4.7: Different Designs of Moving Attention Branch. Each of the three
options (a-c) is based on taking the pixel-level difference between the two images.

are proposed. The concrete structures are proposed as alternatives to the GAM
module. The concrete structures of the three options are shown diagrammatically
in Figure 4.7. Branch (a) only consists of an element-wise subtraction and an ab-
solute operation. Branch (b) contains an element-wise subtraction and a following
convolutional layer. Branch (c) is composed of an element-wise subtraction, an
absolute operation and a convolutional layer. The designs are inspired by the

Temporal Differencing 2.3.1 method used in moving object detection.

Methods car truck person | mAP
Baseline + Refine 277  18.7 2.6 6.0
Baseline + Refine + Brancha | 4.8 14.2 15.1 8.6
Baseline + Refine + Branch b | 0.6 3.6 1.1 1.4
Baseline + Refine + Branchc | 3.5 16.3 16.5 9.1
Baseline + Refine + GAM 11.7 18.8 12.6 10.7

Table 4.3: Comparison of AP performance (%) on Calipsa test set (IoU
threshold: 0.5). The cyclist class is ignored because the cyclist APs of all frame-
works are in the range [0.0%, 0.6%]. Refine denotes three refinements.

In Table 4.3, all branches (a), (b) and (c) can bring mAP improvement to Base-
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Methods car truck person | mAP

Baseline + Refine 2777 37.3 50.5 28.8
Baseline + Refine + Brancha | 27.5 30.6 36.6 | 23.7
Baseline + Refine + Branch b | 33.9 38.0 34.1 334
Baseline + Refine + Branch ¢ | 21.7 33.0 34.8 22.4
Baseline + Refine + GAM 232 445 32.7 25.2

Table 4.4: Comparison of AP performance (%) on Calipsa test set (IoU
threshold: 0.01). The cyclist class is ignored because the cyclist APs of all
frameworks are in the range [0.0%, 0.6%] except for the framework with Branch
(b) (27.5%). Refine denotes three refinements.

line+Refine framework, but the improvements are all smaller than the GAM mod-
ule. For the framework (Baseline + Refine + Branch b), due to the absence of
an absolute value operation, the attention map may contain negative values which
have a large impact on the precision of localization. Therefore the mAP perfor-
mance of this framework is very low (1.4%). Branch (c) applies an additional con-
volutional layer to Branch (a) thus obtaining greater performance. Considering no
additional backward propagation and loss computation is added, the improvement

3.1% demonstrates the effectiveness of Branch (c).

Table 4.4 shows the performance of different frameworks with IoU threshold
0.01, Branch (b) brings the greatest improvement among the three branches and
achieves 33.4% which also exceeds the original framework (Baseline + Refine).
However, the high performance does not necessarily exhibit the capability to de-
tect moving objects of Branch (b) because the framework may output the predic-

tion boxes that almost cover a large proportion of the whole image.

Consider that the only difference between Branch b and c is the absolute operation.
The reasons of such poor performance with IoU threshold 0.5 (1.4%) may be:
(1) The absolute operation increases the difficulty of parameter learning in the

moving branch because the absolute function is undifferentiable at 0. (2) The
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attention map output by the Branch b may be activated around the target object
(object contour) which makes almost all nearby proposals get a higher confidence
score. It is difficult for the framework to find the most accurate proposal. Thus

the performance with IoU threshold 0.5 is extremely low.

4.4 CAM visualization

In Figure 4.8 and 4.9, a few interesting class activation maps (CAM) are shown.
The generation of these CAMs is slightly different from (Zhou et al., 2016). Con-
sidering the channel size of the confidence map (Figure 3.5) exactly equals the
number of classes, each channel of the confidence map represents an activation
map of a class. The order of classes is the same as the ground-truth label because
of the way that Lgay 1s defined. Dark areas are not activated. The lighter parts

represent the more activated areas.

The first two columns (Figure 4.8 and 4.9) are the input of the framework. The
third column is the activation map of the most activated class (the activation map
which contains the maximally activated pixel). The class names are written on the

top-left corner of the third-column images.

All these class activation maps clearly demonstrate that the GAM module is ca-
pable of identifying different classes of objects. Furthermore, it is able to detect
moving objects from static ones. For example, in the second row of Figure 4.8,
the moving car in the bottom is significantly more activated than the stationary
cars. Also in the fourth row of Figure 4.8, there are ten trucks that exist in the

image but only the moving truck on the left of the image is activated.

The GAM module tends to identify the class via color or texture instead of shape.

In the last row of Figure 4.8, the man in the images is mistakenly identified as

48



University of Oxford St Anne’s College

a truck. The reasons may be: (1) The orange color of the coat is similar to the
common color of trucks. (2) There are very few training images that contain a

man from the top view.

Despite the high similarity between trucks and cars, the GAM module is able to
differentiate both classes very well. For instance, in the fifth row of Figure 4.9,
only the area containing the moving truck is activated whereas the areas of all
other small cars are dark. Similar results can be seen in the other rows in Figure

4.9.
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person

person

truck

Figure 4.8: Visualization of the class activation maps (CAM). Note that each
map is of the most activated class (see labels) and that lighter areas are more
activated. The man in the last row is identified as a truck due to the orange coat.
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CAM 081

road right

Figure 4.9: Visualization of the class activation maps (CAM). Note that each
map is of the most activated class (see labels) and that lighter areas are more
activated. Trucks and cars are successfully differentiated in these CAMS.
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5| Conclusion

In this dissertation, we go through the related literature in moving object detection
and present a deep learning based framework for weakly supervised moving ob-
ject detection. The framework is constructed based on OICR (Tang et al., 2017)
with the addition of other effective modules to improve the mAP performance
on the Calipsa data set. The framework contains several Refinement Modules, a
Guided Attention Module (GAM), a Box Regression Module and a Knowledge

Distillation Module.

The experiments in chapter four demonstrate that the proposed framework ob-
tains substantial AP improvements compared with the baseline. Considering that
the huge training set (27,000 pairs of images) is fed into the framework and the
frozen backbone is pre-trained on the Imagenet data set, the proposed framework

is anticipated to generalize well to other data sets (only need to fine-tune).

The whole project took me about five months to finish all the works including
literature reading, coding, doing experiments and writing the dissertation. The
source code of the whole project is constructed based on the GitHub repository
(wsddn.pyrtorch (Dursun, 2019)). In my final project, there are 3682 lines of
python source code in total except for 937 lines of comments and 380 lines of
configuration. For the new modules or processes presented in this dissertation,
more than 2000 lines of codes in the project are completely written by me. In
addition to the brand new modules, I also adapted or changed more than 500 lines
of codes such as the scripts for training, evaluation or information printing. During
these five months, there are 130 commits recorded by the git tool. As introduced
in Section 4.2, all experiments take 40000 iterations during training, and every 20

iterations (as a batch) take 45 seconds to finish on an individual GPU. Therefore, it
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costs 2 days approximately to train a single framework (when the loss converges).
Limited by the computation resources (one NVIDIA Tesla T4 GPU), I have only
done 50 to 60 experiments. A great number of experimental results are not shown

in this dissertation because of the poor performances or numerical issues.

From this project, I learnt that real-world deep learning tasks are more difficult

that those I confronted in the machine learning course.

1. The sizes of data set in the industry are much greater than standard data sets
(always more than ten times). For instance, the Calipsa data set is 30 times

bigger than the VOC2007.

2. The problems in the industry are more complicated than the standard aca-
demic problems. The proposed framework should only output moving tar-

gets, whereas stationary objects should be ignored.

3. The quality of images and annotations may be worse than standard data sets.
In the VOC2007 data set, the target objects always account for a large area
in the images (more than 40% areas), whereas some of the target objects in
the Calipsa data set only account for less than 5% of the area of the image.
Most target objects in the VOC2007 data set are very clear while some of

the target objects in the Calipsa data set are blurred.

4. Class imbalance is a serious problem in the Calipsa data set while the num-
ber of target objects in each class is roughly the same in the VOC2007
data set. Therefore, the AP performance of the proposed framework on the
cyclist class is close to 0. If we ignore the cyclist class and only train the ob-
jects of the other three classes in this project, the final performance should

be greater than or equal to 19.1% mAP.

5. In conference papers, authors do not apply dozens of techniques to aug-
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ment the data set for two reasons: (1) Too many data augmentation methods
may retard the convergence of a model which costs time and computation
resources. (2) Researchers tend to focus on the effectiveness of a mod-
ule instead of the performance of the complete framework, so they only
utilize the normal augmentation methods that everyone uses. However, in
real-world problems, data augmentation is of great importance to improve
the performance and generalization ability of a framework (with numerous
computation resources). In this project, limited by time and resources, the

images are only resized and flipped as data augmentation methods.

The best performance of the proposed framework (14.3%) does not attain my ini-
tial expectation. For the pure object detection task on the VOC2007 data set, my
OICR implementation achieves 35% mAP without fine-tuning (41% presented in
the original paper (Tang et al., 2017)). Considering the challenging data set (low
resolution and quality) and the more difficult task (moving object detection), the
mAP performance is expected to attain 20% mAP without fine-tuning. Despite
that the performance is lower than expected, the proposed framework is able to
accurately detect some of the moving objects in the known classes from the visu-
alizations of the chapter four (see Figures 4.2, 4.3 and 4.4). In the industry, this
proposed framework may be utilized to generate coarse object-level annotations
for moving object detection tasks, and the accurate annotations can be filtered out

manually to train a fully supervised framework.

Meanwhile, this proposed framework has a lot of room for improvements which

are elaborated in the next section (Section 5.1).
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5.1 Future Work

Chapter four shows some visualizations of the prediction boxes and class activa-
tion maps output by the framework which implies a few potential defects of it.

These defects indicate some areas which should be addressed in future work:

1. During training, the IoU threshold /; in the refinement module is set to
0.5 consistently. However, in the initial phase of training, the top-scoring
proposal is small due to the local minimum problem so that the overlaps
between the top-scoring proposal and almost all other ones are smaller than
0.5. In other words, during the initial phase of training, the refinements are
useless. A proposed solution to this is that the IoU threshold can be dy-
namically adjusted from a low to a high value as iterations progress during

training.

2. In the refinement process, only one pseudo-ground-truth box (top-scoring
proposal) is selected for each class, whereas multiple objects of this class
may appear in a given image pair. More than one proposal should be chosen
as pseudo-ground-truth boxes according to a given score threshold. For
example, if the top four scores of a class are 0.4, 0.3, 0.2, 0.05 and the
score threshold is set to 0.1, then there will be three proposals selected as

pseudo-ground-truth boxes.

3. Considering the difference between the VOC2007 data set and the Calipsa
data set, the backbone could be pre-trained on the Calipsa set for a classifi-

cation task.

4. More data augmentation methods can be applied, such as random crop and
random rotation, in order to improve the generalization ability of the frame-

work.
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